Skip to content

Use DEG to get cohort-specific and disease relatated ceRNA axis

Use differential expressed (DE) miRNA/mRNA to get cohort-specific and disease relatated ceRNA axis

%load_ext autoreload
import sys
sys.path.append('../../')

from cernatax.cernatax import CERNATAX

# initialize CERNATAX object
cernatax = CERNATAX()

# Use DE miRNA/mRNA to get the ceRNA_axis

import pandas as pd

# use DE miRNA list as the strict criteria
deg_strict_df = pd.read_csv('../../demo/scz_deg_miRNA.csv', index_col=0)
print('deg_strict_df\n', deg_strict_df.head())
# use DE mRNA list as the loose criteria
deg_loose_df = pd.read_csv('../../demo/scz_deg_mRNA.csv', index_col=0)
print('deg_loose_df\n', deg_loose_df.head())
deg_strict_df
                   type             gene    log2FC        pvalue          padj
hsa-miR-16-2-3p  miRNA  hsa-miR-16-2-3p -5.139793  2.640000e-13  4.020000e-10
hsa-miR-1306-3p  miRNA  hsa-miR-1306-3p -2.209798  3.320000e-11  1.690000e-08
hsa-miR-1307-3p  miRNA  hsa-miR-1307-3p -2.093602  2.960000e-11  1.690000e-08
hsa-miR-132-5p   miRNA   hsa-miR-132-5p -2.121375  5.510000e-09  1.680000e-06
hsa-miR-624-5p   miRNA   hsa-miR-624-5p  3.021188  3.580000e-08  9.100000e-06
deg_loose_df
            baseMean  log2FoldChange     lfcSE      stat    pvalue      padj  \
MPO      306.948587        2.216337  0.564877  3.923577  0.000087  0.002920   
DEPDC1    13.781165        2.521829  0.955832  2.638359  0.008331  0.072875   
DEPDC1B   35.058035        1.846581  0.528130  3.496453  0.000471  0.010010   
UTS2     166.152947        2.148164  0.747088  2.875383  0.004035  0.044262   
COL17A1   17.798800        2.779151  1.039143  2.674463  0.007485  0.067760   

            gene  type    log2FC  
MPO          MPO  mRNA  2.216337  
DEPDC1    DEPDC1  mRNA  2.521829  
DEPDC1B  DEPDC1B  mRNA  1.846581  
UTS2        UTS2  mRNA  2.148164  
COL17A1  COL17A1  mRNA  2.779151  

# Use strict DE miRNA to get the ceRNA_axis
ceRNA_df, axis_df = cernatax.find_ceRNA_axis_by_DEG(deg_strict_df)
# store the filtered ceRNA network and ceRNA axis
ceRNA_df.to_csv('../../demo_out/SCZ_ceRNA_network.csv')
axis_df.to_csv('../../demo_out/SCZ_ceRNA_axis.csv')
ceRNA_df
miRNA ceRNA species database type miRNA_log2FC ceRNA_log2FC inference
682758 hsa-miR-1278 CEBPB Homo sapiens RNAInter miRNA-mRNA 2.011778 -7.399231 strict
805405 hsa-miR-1306-3p CEACAM6 Homo sapiens miRWalk miRNA-mRNA -2.209798 2.820942 strict
806911 hsa-miR-1306-3p NEBL Homo sapiens miRWalk miRNA-mRNA -2.209798 2.529632 strict
807351 hsa-miR-1306-3p PPARGC1A Homo sapiens miRWalk miRNA-mRNA -2.209798 3.927339 strict
812245 hsa-miR-1307-3p ADAM32 Homo sapiens miRWalk miRNA-mRNA -2.093602 3.126004 strict
... ... ... ... ... ... ... ... ...
6996766 hsa-miR-6855-5p FSIP2 Homo sapiens miRWalk miRNA-mRNA -2.456434 4.072671 strict
6998598 hsa-miR-6855-5p RNASE3 Homo sapiens miRWalk miRNA-mRNA -2.456434 2.428955 strict
6998710 hsa-miR-6855-5p RWDD3 Homo sapiens miRWalk miRNA-mRNA -2.456434 2.265765 strict
6999339 hsa-miR-6855-5p TLCD4-RWDD3 Homo sapiens miRWalk miRNA-mRNA -2.456434 3.067442 strict
6999841 hsa-miR-6855-5p ZNF208 Homo sapiens miRWalk miRNA-mRNA -2.456434 2.872955 strict

93 rows × 8 columns

# Use strict DE miRNA and loose DE mRNA to get the final ceRNA_axis
loose_axis_df = cernatax.expand_ceRNA_axis_by_loose_DEG(deg_strict_df, deg_loose_df)
# store the final ceRNA axis
loose_axis_df.to_csv('../../demo_out/SCZ_ceRNA_loose_axis.csv')
# output the final ceRNA axis
loose_axis_df
miRNA ceRNA species database type miRNA_log2FC ceRNA_log2FC inference
1775644 hsa-miR-3064-5p ARHGAP8 Homo sapiens miRWalk miRNA-mRNA -2.123515 5.218091 loose
1775806 hsa-miR-3064-5p BCL2A1 Homo sapiens miRWalk miRNA-mRNA -2.123515 1.586707 loose
1775833 hsa-miR-3064-5p BIRC5 Homo sapiens miRWalk miRNA-mRNA -2.123515 1.762193 loose
1775877 hsa-miR-3064-5p BTNL3 Homo sapiens miRWalk miRNA-mRNA -2.123515 4.612546 loose
1776086 hsa-miR-3064-5p CCDC80 Homo sapiens TargetSCAN_8.0 miRNA-mRNA -2.123515 5.326842 loose
... ... ... ... ... ... ... ... ...
4495205 hsa-miR-485-5p TLCD4-RWDD3 Homo sapiens miRWalk miRNA-mRNA -3.818348 3.067442 loose
4495575 hsa-miR-485-5p UNC5B Homo sapiens TargetSCAN_8.0 miRNA-mRNA -3.818348 1.507402 loose
4495619 hsa-miR-485-5p UTS2 Homo sapiens miRWalk miRNA-mRNA -3.818348 2.148164 loose
4495817 hsa-miR-485-5p ZFP30 Homo sapiens miRWalk miRNA-mRNA -3.818348 1.746945 loose
4495936 hsa-miR-485-5p ZNF441 Homo sapiens miRWalk miRNA-mRNA -3.818348 1.650988 loose

118 rows × 8 columns