ceRNA-axis correlation analysis for a cohort
ceRNA-axis correlation analysis for a cohort
Load the SCZ data
%load_ext autoreload
import scanpy as sc
import anndata as ad
lncRNA_adata = sc.read_h5ad('../../demo/lncRNA_adata.h5ad')
lncRNA_adata.var_names_make_unique()
miRNA_adata = sc.read_h5ad('../../demo/miRNA_adata.h5ad')
miRNA_adata.var_names_make_unique()
mRNA_adata = sc.read_h5ad('../../demo/mRNA_adata.h5ad')
mRNA_adata.var_names_make_unique()
adata = ad.concat([mRNA_adata, miRNA_adata, lncRNA_adata], axis=1)
adata.obs = mRNA_adata.obs
adata.layers['count'] = adata.X
adata
Calculate the correlation of ceRNA axis
%autoreload
import sys
sys.path.append('../../../../1_GREA')
sys.path.append('../../')
from cernatax.cernatax import CERNATAX
# initialize CERNATAX object
cernatax = CERNATAX()
import anndata as ad
# merge the mRNA, miRNA, and lncRNA expression profiles
adata = ad.concat([mRNA_adata.T, miRNA_adata.T, lncRNA_adata.T], merge="same").T
# set the interested ceRNA axis
ceRNA_axis_list = [('ARHGAP8', 'hsa-miR-485-5p'), ('ARHGAP8', 'ENST00000522525'), ('hsa-miR-485-5p', 'ENST00000522525')]
# calculate the correlation
corr_df = cernatax.cohort_ceRNA_corr(adata, ceRNA_axis_list)
corr_df.to_csv('../../demo_out/axis_correlation.csv')
# output correlation
corr_df