CRISGITime Class Initialization
Function
The CRISGITime
class extends the CRISGI
base class to provide time-based modeling for gene expression data. It supports various neural network architectures (3L-CNN, 1L-CNN (simple CNN), logistic regression) for downstream analysis, and manages model selection, initialization, and device assignment.
Parameters
Name | Type | Description |
---|---|---|
adata |
AnnData | Annotated data matrix (typically single-cell gene expression data). |
device |
str | Device to run the model on ('cpu' or 'cuda' ). Default is 'cpu' . |
model_type |
str | Type of model to use ('cnn' , 'simple_cnn' , or 'logistic' ). Default is 'cnn' . |
ae_path |
str | Path to a pre-trained autoencoder model (optional, used for CNN-based models). |
mlp_path |
str | Path to a pre-trained MLP model (optional, used for CNN-based models). |
model_path |
str | Path to a pre-trained logistic regression model (optional, used for logistic model). |
**kwargs |
dict | Additional keyword arguments passed to the base CRISGI class. |
Return type
CRISGITime
object
Returns
An instance of the CRISGITime
class, initialized with the specified data, model type, and device. The model is ready for downstream analysis.
Attributes Set
adata
: Processed AnnData object.device
: Device used for computation.model_type
: Type of model selected.model
: Instantiated model object (CNNModel, SimpleCNNModel, or LogisticModel).out_dir
: Output directory for results.- Other attributes inherited from
CRISGI
(e.g.,interaction_methods
,organism
,n_threads
, etc.).
Example
import anndata as ad
from crisgitime import CRISGITime
# Load your single-cell data
adata = ad.read_h5ad('your_data.h5ad')
# Initialize CRISGITime with a CNN model on CPU
crisgi_time = CRISGITime(
adata=adata,
device='cpu',
model_type='cnn',
ae_path='path/to/autoencoder.pth',
mlp_path='path/to/mlp.pth',
out_dir='./results'
)
# The model is now ready for downstream analysis
print(crisgi_time.model_type) # Output: cnn
print(crisgi_time.device) # Output: cpu