Initialization
CRISGI.init
Function
__init__(
adata,
bg_net=None,
bg_net_score_cutoff=850,
genes=None,
n_hvg=5000,
n_pcs=30,
interactions=None,
n_threads=5,
interaction_methods=["prod"],
organism="human",
class_type="time",
dataset="test",
out_dir="./out",
)
Initializes a CRISGI object for single-cell gene interaction analysis. Sets up the AnnData object, prepares the background network, and configures preprocessing and output directories.
Parameters
| Name | Type | Description |
|---|---|---|
| adata | AnnData | The annotated data matrix (cells x genes) to be analyzed. |
| bg_net | Optional | Precomputed background network (default: None). |
| bg_net_score_cutoff | int | Score cutoff for background network edges (default: 850). |
| genes | list or None | List of gene names to include (default: None, uses highly variable genes if available). |
| n_hvg | int or None | Number of highly variable genes to select (default: 5000). |
| n_pcs | int | Number of principal components for PCA (default: 30). |
| interactions | Optional | Predefined gene interactions (default: None). |
| n_threads | int | Number of threads to use for computation (default: 5). |
| interaction_methods | list | Methods for interaction inference (default: ["prod"]). |
| organism | str | Organism name (default: 'human'). |
| class_type | str | Type of analysis class (default: 'time'). |
| dataset | str | Dataset identifier (default: 'test'). |
| out_dir | str | Output directory for results (default: './out'). |
Return type
None
Returns
Initializes the CRISGI object and prepares it for downstream analysis.
Attributes Set
adata: Processed AnnData object.interaction_methods: List of interaction inference methods.organism: Organism name.n_threads: Number of threads for computation.dataset: Dataset identifier.class_type: Type of analysis class.out_dir: Output directory path.bg_net_score_cutoff: Score cutoff for background network.adata.varm['bg_net']: Background network matrix.
Example
import scanpy as sc
from crisgi import CRISGI
adata = sc.read_h5ad('example_data.h5ad')
crisgi = CRISGI(
adata,
interaction_methods=["prod"],
n_hvg=3000,
n_pcs=20,
organism='human',
out_dir='./crisgi_results'
)
CRISGITime.init
Function
__init__(
self,
adata,
device="cpu",
model_type="cnn",
ae_path=None,
mlp_path=None,
model_path=None,
**kwargs
)
Initializes a CRISGITime object for time-series or temporal single-cell gene interaction analysis. Inherits from CRISGI and adds model selection and device configuration.
Parameters
| Name | Type | Description |
|---|---|---|
| adata | AnnData | The annotated data matrix (cells x genes) to be analyzed. |
| device | str | Device to use for computation ('cpu' or 'cuda', default: 'cpu'). |
| model_type | str | Model type to use ('cnn', 'simple_cnn', 'logistic', default: 'cnn'). |
| ae_path | str/None | Path to autoencoder model weights (optional). |
| mlp_path | str/None | Path to MLP model weights (optional). |
| model_path | str/None | Path to logistic model weights (optional). |
| **kwargs | dict | Additional keyword arguments passed to CRISGI.init. |
Return type
None
Returns
Initializes the CRISGITime object and sets up the selected model for downstream analysis.
Attributes Set
- All attributes from
CRISGI. device: Computation device.model_type: Selected model type.model: Instantiated model object.
Example
import scanpy as sc
from crisgi import CRISGITime
adata = sc.read_h5ad('example_data.h5ad')
crisgi_time = CRISGITime(
adata,
interaction_methods=["prod"],
device='cuda',
model_type='cnn',
out_dir='./crisgi_time_results'
)