Initialization
CRISGI.init
Function
__init__(
adata,
bg_net=None,
bg_net_score_cutoff=850,
genes=None,
n_hvg=5000,
n_pcs=30,
interactions=None,
n_threads=5,
interaction_methods=["prod"],
organism="human",
class_type="time",
dataset="test",
out_dir="./out",
)
Initializes a CRISGI object for single-cell gene interaction analysis. Sets up the AnnData object, prepares the background network, and configures preprocessing and output directories.
Parameters
Name | Type | Description |
---|---|---|
adata | AnnData | The annotated data matrix (cells x genes) to be analyzed. |
bg_net | Optional | Precomputed background network (default: None). |
bg_net_score_cutoff | int | Score cutoff for background network edges (default: 850). |
genes | list or None | List of gene names to include (default: None, uses highly variable genes if available). |
n_hvg | int or None | Number of highly variable genes to select (default: 5000). |
n_pcs | int | Number of principal components for PCA (default: 30). |
interactions | Optional | Predefined gene interactions (default: None). |
n_threads | int | Number of threads to use for computation (default: 5). |
interaction_methods | list | Methods for interaction inference (default: ["prod"]). |
organism | str | Organism name (default: 'human'). |
class_type | str | Type of analysis class (default: 'time'). |
dataset | str | Dataset identifier (default: 'test'). |
out_dir | str | Output directory for results (default: './out'). |
Return type
None
Returns
Initializes the CRISGI object and prepares it for downstream analysis.
Attributes Set
adata
: Processed AnnData object.interaction_methods
: List of interaction inference methods.organism
: Organism name.n_threads
: Number of threads for computation.dataset
: Dataset identifier.class_type
: Type of analysis class.out_dir
: Output directory path.bg_net_score_cutoff
: Score cutoff for background network.adata.varm['bg_net']
: Background network matrix.
Example
import scanpy as sc
from crisgi import CRISGI
adata = sc.read_h5ad('example_data.h5ad')
crisgi = CRISGI(
adata,
interaction_methods=["prod"],
n_hvg=3000,
n_pcs=20,
organism='human',
out_dir='./crisgi_results'
)
CRISGITime.init
Function
__init__(
self,
adata,
device="cpu",
model_type="cnn",
ae_path=None,
mlp_path=None,
model_path=None,
**kwargs
)
Initializes a CRISGITime object for time-series or temporal single-cell gene interaction analysis. Inherits from CRISGI and adds model selection and device configuration.
Parameters
Name | Type | Description |
---|---|---|
adata | AnnData | The annotated data matrix (cells x genes) to be analyzed. |
device | str | Device to use for computation ('cpu' or 'cuda' , default: 'cpu' ). |
model_type | str | Model type to use ('cnn' , 'simple_cnn' , 'logistic' , default: 'cnn' ). |
ae_path | str/None | Path to autoencoder model weights (optional). |
mlp_path | str/None | Path to MLP model weights (optional). |
model_path | str/None | Path to logistic model weights (optional). |
**kwargs | dict | Additional keyword arguments passed to CRISGI.init. |
Return type
None
Returns
Initializes the CRISGITime object and sets up the selected model for downstream analysis.
Attributes Set
- All attributes from
CRISGI
. device
: Computation device.model_type
: Selected model type.model
: Instantiated model object.
Example
import scanpy as sc
from crisgi import CRISGITime
adata = sc.read_h5ad('example_data.h5ad')
crisgi_time = CRISGITime(
adata,
interaction_methods=["prod"],
device='cuda',
model_type='cnn',
out_dir='./crisgi_time_results'
)