Skip to content

pl.pheno_level_accumulated_top_n_ORA

Function

pl.pheno_level_accumulated_top_n_ORA(
    target_group,
    method="prod",
    test_type="TER",
    p_adjust=True,
    p_cutoff=0.05,
    n_top_pathway=10,
    n_top_interactions=500,
    piority_term=None,
    eval_para='top_n_ratio',
    dataset_name=None
)

Performs pathway enrichment analysis at the phenotype level using the top-N accumulation strategy. This function evaluates pathway enrichment results across multiple top-N gene sets, ranks pathways based on a specified evaluation parameter, and visualizes the results as a heatmap. It supports prioritization of specific pathways and flexible evaluation metrics.

Parameters

Name Type Description
target_group str Target group for enrichment analysis (e.g., phenotype or cluster name).
method str, optional Correlation method used for analysis. Default is "prod".
test_type str, optional Type of statistical test. Default is "TER".
p_adjust bool, optional Whether to use adjusted p-values for filtering. Default is True.
p_cutoff float, optional P-value cutoff for significance filtering. Default is 0.05.
n_top_pathway int, optional Number of top pathways to display in the heatmap. Default is 10.
n_top_interactions int, optional Maximum number of top interactions (gene sets) to consider. Default is 500.
piority_term list or None, optional List of pathway terms to prioritize or None for no prioritization. Default is None.
eval_para str, optional Evaluation parameter for ranking pathways. Options: 'top_n_ratio', 'overlap_ratio', 'P-value', 'Adjusted P-value', 'Odds Ratio', 'Combined Score', '-logP'. Default is 'top_n_ratio'.
dataset_name str or None, optional Name of the dataset for labeling outputs. Default is None.

Return type

None

Returns

  • Saves a heatmap plot of the top-N pathway enrichment results to the output directory.
  • Displays the heatmap in the current matplotlib session.
  • Prints the output file path.

Attributes Set

  • No new attributes are set on the CRISGI object by this function.

Example

# Assume crisgi_obj is an instance of CRISGI with enrichment results computed

# Perform top-N pathway enrichment analysis for the 'Tumor' group
crisgi_obj.pheno_level_accumulated_top_n_ORA(
    target_group='Tumor',
    method='prod',
    test_type='TER',
    p_adjust=True,
    p_cutoff=0.01,
    n_top_pathway=15,
    n_top_interactions=300,
    piority_term=['Apoptosis', 'Cell Cycle'],
    eval_para='overlap_ratio',
    dataset_name='CancerStudy'
)

# The function will save and display a heatmap of the top 15 pathways
# ranked by overlap ratio for the 'Tumor' group, highlighting prioritized terms.