SCZ - ceRNA-axis correlation analysis for a cohort
ceRNA-axis correlation analysis for a cohort
%load_ext autoreload
# Just download the github, and load the cernaxis into python path
# do
import sys
sys.path.append('../../')
# or install cernaxis by pip
#!pip install git+https://github.com/compbioclub/cernaxis.git@v1_as
from cernaxis.cernaxis import ceRNAxis
# initialize cernaxis object
cernaxis = ceRNAxis()
Load the SCZ data
%autoreload
import scanpy as sc
import anndata as ad
lncRNA_adata = sc.read_h5ad('../../demo/SCZ_lncRNA.h5ad')
lncRNA_adata.var_names_make_unique()
miRNA_adata = sc.read_h5ad('../../demo/SCZ_miRNA.h5ad')
miRNA_adata.var_names_make_unique()
mRNA_adata = sc.read_h5ad('../../demo/SCZ_mRNA.h5ad')
mRNA_adata.var_names_make_unique()
adata = ad.concat([mRNA_adata, miRNA_adata, lncRNA_adata], axis=1)
adata.obs = mRNA_adata.obs
adata.layers['count'] = adata.X
adata
Calculate the correlation of ceRNA axis
%autoreload
import anndata as ad
# merge the mRNA, miRNA, and lncRNA expression profiles
adata = ad.concat([mRNA_adata.T, miRNA_adata.T, lncRNA_adata.T], merge="same").T
# set the interested ceRNA axis
ceRNA_axis_list = [('ARHGAP8', 'hsa-miR-485-5p'), ('ARHGAP8', 'ENST00000522525'), ('hsa-miR-485-5p', 'ENST00000522525')]
# calculate the correlation
corr_df = cernaxis.cohort_ceRNA_corr(adata, ceRNA_axis_list)
corr_df.to_csv('../../demo_out/SCZ_axis_correlation.csv')
# output correlation
corr_df